The bounded chromatic number for graphs of genus g

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

متن کامل

On the b-chromatic number of regular bounded graphs

A b-coloring of a graph is a proper coloring such that every color class contains a vertex adjacent to at least one vertex in each of the other color classes. The b-chromatic number of a graph G, denoted by b(G), is the maximum integer k such that G admits a b-coloring with k colors. El Sahili and Kouider conjectured that b(G) = d + 1 for d-regular graph with girth 5, d ≥ 4. In this paper, we p...

متن کامل

the locating chromatic number of the join of graphs

‎let $f$ be a proper $k$-coloring of a connected graph $g$ and‎ ‎$pi=(v_1,v_2,ldots,v_k)$ be an ordered partition of $v(g)$ into‎ ‎the resulting color classes‎. ‎for a vertex $v$ of $g$‎, ‎the color‎ ‎code of $v$ with respect to $pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_pi}(v)=(d(v,v_1),d(v,v_2),ldots,d(v,v_k))$‎, ‎where $d(v,v_i)=min{d(v,x):~xin v_i}‎, ‎1leq ileq k$‎. ‎if‎ ‎distinct...

متن کامل

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 1992

ISSN: 0095-8956

DOI: 10.1016/0095-8956(92)90017-r